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Objective and Contributions

Uncertainty quantification using transformers’ in-context learning (ICL) abilities is a promis-
ing area of research, but still underexplored [1].
Objectives:
▶ Leverage in-context learning for robust, scalable uncertainty quantification for noisy

regression [3].
▶ Benchmark against reference methods for performance and computational efficiency.

Contributions:
▶ Introduce a novel conformal prediction method based on in-context learning.
▶ Demonstrate the effectiveness of our approach through extensive experiments,

including exact oracle conformal predictors for linear self-attention.

In-context learning and conformal prediction

Full Conformal Prediction

Goal. Build set Γ𝛼 (xn+1) with coverage guarantee: P (yn+1 ∈ Γ𝛼 (xn+1)) ≥ 1 − 𝛼

▶ Augment dataset Dn for z ∈ ℝ (or {z ∈ Z} ⊂ ℝ)

Dn+1(z) = Dn ∪ {(xn+1, z)} with Dn = {(xi , yi)}ni=1

▶ Fit model with ridge regression on Dn+1(z) for each z :

ŵ(z) = arg min
w∈ℝ

n∑︁
i=1

(yi − ⟨w, xi⟩)2 + (z − ⟨w, xn+1⟩)2 + 𝜆∥w∥2
2

▶ Compute conformity scores (residuals):

R̂i (z) =
��yi − ⟨ŵ(z), xi⟩

��, R̂n+1(z) =
��z − ⟨ŵ(z), xn+1⟩

��
▶ Rank the conformity scores and compute the p-value:

𝜋 (z) = 1 − 1
n + 1 rank

(
R̂n+1(z)

)
▶ Build the prediction set for xn+1:

Γ𝛼 (xn+1) = {z ∈ ℝ | 𝜋 (z) ≥ 𝛼}

▶ In-context learning for regression tasks. Context D (𝜏)
n = {(xi , yi)}ni=1 with

yi = ⟨w(𝜏), xi⟩ + 𝜀i , with w(𝜏) ∼ N(0,𝛾2Id), 𝜀i ∼ N(0,𝜎2) and xi ∼ U(−a, a)d .
Predict unseen label yn+1 given xn+1 via single forward pass.

▶ Tokenization scheme. Tokens include both context and query:

E
(
D (𝜏)

n , x(𝜏)n+1, z
)
=

[
x(𝜏)1 ... x(𝜏)n x(𝜏)n+1
y (𝜏)1 ... y (𝜏)n z

]
Mask z = 0 at training.

▶ Linear Self-Attention (LSA) fLSA.
Alternative to softmax attention for ICL.
Theoretically justified by [3, 2].

▶ Pre-training. Minimize loss w.r.t. LSA
parameters 𝜽

L(𝜽 ) = 𝔼
[ (
fLSA(𝜽 ,E)[d+1,n+1] − yn+1

)2]
with expectation over p(w, x, 𝜀).

Bridging ICL and CP

Note: Pre-trained transformer converges to optimal Bayes-risk predictor (𝜆 = 𝛾2/𝜎2)
▶ Predictive residuals via attention. Use transformer outputs and avoid

re-training for each z and predicting ⟨w, xi⟩ for all i . Replace optimization with
forward pass through the transformer.

ŷ(z) = fLSA(𝜽 ,E(Dn, xn+1, z))[d+1,:]

▶ Directly compute the residuals R̂i (z) =
��yi − ŷ(z)[i]

��, R̂n+1(z) =
��z − ŷ(z)[n+1]

��
▶ Compute 𝜋 (z) and collect all z

with 𝜋 (z) ≥ 𝛼 .
▶ For efficient computation, select

z ∈ Z and parallelize over z and
xn+1 as single batched forward
pass.

Take a picture to download
the full paper

Do ICL and CP work together?
▶ Objectives: Evaluate quality of predictive intervals combining ICL and CP.
▶ Baseline: CP with ridge (oracle), and split CP with ridge.
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Theoretical coverage

CP with ICL converges to theoretical coverage as context size increases, matching oracle
performance. Split CP with ridge shows higher variance at small contexts.

Does CP with ICL scale?
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Coverage of CP with ICL converges to theoret-
ical value independently of input dimension.

Method Context: 100 points
CP with ICL 0.32s (0.29, 0.41)

CP with ridge 0.42s (0.40, 0.49)

Split CP with ridge 0.41s (0.37, 0.49)

CP with ICL is faster than (but comparable
to) ridge-based methods at context size 100.

Scaling laws for conformal prediction with ICL

▶ Question: How does predictive interval
quality scale with compute-contrained
pre-training?

▶ Method: Predictive interval quality
modeled as function of model size and
data size, given compute budget.

▶ How: Train models with varying
compute, model size, and data size, and
evaluate predictive intervals (vs oracle). 104 105
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Scaling laws of in-context conformal predictions
IsoFLOPs: 3e11
IsoFLOPs: 1e12
Predicted compute-efficient frontier
Result w/ compute-efficient alloc. (3e12 FLOPs)
Result w/ compute-efficient alloc. (1e13 FLOPs)

Summary: (1) Can be used to predict the best model size and data size for a given
compute budget. (2) Scaling follows Chinchilla laws but larger models yield better predictive
intervals than increasing data alone.

Conclusions

CP with ICL provides reliable predictive intervals with guaranteed coverage, matches oracle
performance, and reduces compute cost.
▶ Discussion:

▶ Synthetic experiments show robust coverage and computational efficiency.
▶ Method achieves similar performance to oracle predictors with a single forward pass.
▶ Mechanistic interpretation of ICL enables fast and accurate uncertainty estimation.

Open questions

▶ Address limitations of simplified transformer architecture.
▶ Towards token-level uncertainty quantification for language models.
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